On the Dzhanibekov Effect: A Tumbling T-handle in Space

Ryan Joo Rui An

2023

1 Introduction

In the 1980s, when cosmonaut Vladimir Dzhanibekov uncrewed a T-shaped nut which has three axes of rotation, he noticed a peculiar behavior: the nut spun and then flipped. A team of mathematicians also independently noticed the effect in a tennis racket. They published their paper, named "The Twisting Tennis Racket".

Formally, this is known as the intermediate axis theorem, which goes as follows.

Theorem 1.1 (Intermediate Axis Theorem). An object rotating about its intermediate axis with a very slight perturbation will undergo periodic flips in its orientation in the absence of external forces.

2 Proof

We first identify the three axes of rotation, as shown in fig. 1.

Figure 1: Axes of rotation [1]

The rotation of rigid bodies are described by Euler's laws of motion¹ [2], given by

$$I_{1}\alpha_{1} - (I_{2} - I_{2})\omega_{2}\omega_{3} = \tau_{1}$$

$$I_{2}\alpha_{2} - (I_{3} - I_{1})\omega_{3}\omega_{1} = \tau_{2}$$

$$I_{3}\alpha_{3} - (I_{1} - I_{2})\omega_{1}\omega_{2} = \tau_{3}$$
(1)

where I_i denotes the moment of inertia along each of the three axes, α_i denotes the component of angular acceleration along the axes, ω_i denotes the component of angular velocity along the axes, τ_i denotes the torque. For our rigid body, we have $I_1 \neq I_2 \neq I_3$.

Remark. The proof of the Euler's laws of motion is rather complicated to be discussed in this text. It can be found here.

From $\tau = I\alpha$, the value for the moment of inertia I tells you how much torque you need to produce a given angular acceleration about that axis. The highest moment of inertia needs the most torque, while the lowest moment needs the least torque.

¹These laws are an extension of Newton's laws, and extends them from Newton's point particles to rigid bodies.

If we consider the case where a rigid body is rotating freely around the 3-axis, we can examine under what conditions this rotation is stable or unstable. This is done by assuming small perturbations to the angular velocities around the 1- and 2-axes. After some manipulations of Euler's equations in eq. (1), we arrive at the following equation:

$$\dot{\alpha}_1 = -\left[\frac{(I_3 - I_2)(I_3 - I_1)}{I_1 I_2} \omega_3^2\right] \omega_1 \tag{2}$$

Since the part within the brackets is just a constant, let's call it k. We have the following three cases:

- 1. I_3 is the largest moment of inertia.
- 2. I_3 is the smallest moment of inertia.
- 3. I_3 is neither, i.e. I_3 is the *intermediate axis*.

Cases 1 and 2:

It is easy to see that k is positive. This gives us

$$\ddot{\omega}_1 = -k\omega_1 \tag{3}$$

using the fact that α is the first time derivative of ω .

Looks familiar? This is the equation for simple harmonic motion. This is a stable motion, meaning that a small perturbation will not bring the body out of its equilibrium.

Case 3:

k is negative, giving us a positive overall constant. This equation is unstable.

References

- [1] Julia Abrams. https://www.comsol.com/blogs/ why-do-tennis-rackets-tumble-the-dzhanibekov-effect-explained/, 2020.
- [2] Physics LibreTexts. https://phys.libretexts.org/Bookshelves/Classical_ Mechanics/Classical_Mechanics_(Tatum)/04%3A_Rigid_Body_Rotation/4.05% 3A_Euler's_Equations_of_Motion.