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1 Introduction

In the 1980s, when cosmonaut Vladimir Dzhanibekov uncrewed a T-shaped nut which
has three axes of rotation, he noticed a peculiar behavior: the nut spun and then flipped.
A team of mathematicians also independently noticed the effect in a tennis racket. They
published their paper, named “The Twisting Tennis Racket”.
Formally, this is known as the intermediate axis theorem, which goes as follows.

Theorem 1.1 (Intermediate Axis Theorem). An object rotating about its intermediate
axis with a very slight perturbation will undergo periodic flips in its orientation in the
absence of external forces.
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2 Proof

We first identify the three axes of rotation, as shown in fig. 1.

Figure 1: Axes of rotation [1]

The rotation of rigid bodies are described by Euler’s laws of motion1 [2], given by

I1α1 − (I2 − I2)ω2ω3 = τ1

I2α2 − (I3 − I1)ω3ω1 = τ2

I3α3 − (I1 − I2)ω1ω2 = τ3

(1)

where Ii denotes the moment of inertia along each of the three axes, αi denotes the
component of angular acceleration along the axes, ωi denotes the component of angular
velocity along the axes, τi denotes the torque. For our rigid body, we have I1 ≠ I2 ≠ I3.
Remark. The proof of the Euler’s laws of motion is rather complicated to be discussed
in this text. It can be found here.

From τ = Iα, the value for the moment of inertia I tells you how much torque you need
to produce a given angular acceleration about that axis. The highest moment of inertia
needs the most torque, while the lowest moment needs the least torque.

1These laws are an extension of Newton’s laws, and extends them from Newton’s point particles to
rigid bodies.
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If we consider the case where a rigid body is rotating freely around the 3-axis, we can
examine under what conditions this rotation is stable or unstable. This is done by
assuming small perturbations to the angular velocities around the 1- and 2-axes. After
some manipulations of Euler’s equations in eq. (1), we arrive at the following equation:

α̇1 = − [
(I3 − I2)(I3 − I1)

I1I2
ω3

2
]ω1 (2)

Since the part within the brackets is just a constant, let’s call it k.
We have the following three cases:

1. I3 is the largest moment of inertia.

2. I3 is the smallest moment of inertia.

3. I3 is neither, i.e. I3 is the intermediate axis.

Cases 1 and 2:

It is easy to see that k is positive. This gives us

ω̈1 = −kω1 (3)

using the fact that α is the first time derivative of ω.
Looks familiar? This is the equation for simple harmonic motion. This is a stable motion,
meaning that a small perturbation will not bring the body out of its equilibrium.
Case 3:

k is negative, giving us a positive overall constant. This equation is unstable.

3



References

[1] Julia Abrams. https://www.comsol.com/blogs/
why-do-tennis-rackets-tumble-the-dzhanibekov-effect-explained/, 2020.

[2] Physics LibreTexts. https://phys.libretexts.org/Bookshelves/Classical_
Mechanics/Classical_Mechanics_(Tatum)/04%3A_Rigid_Body_Rotation/4.05%
3A_Euler’s_Equations_of_Motion.

4

https://www.comsol.com/blogs/why-do-tennis-rackets-tumble-the-dzhanibekov-effect-explained/
https://www.comsol.com/blogs/why-do-tennis-rackets-tumble-the-dzhanibekov-effect-explained/
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/04%3A_Rigid_Body_Rotation/4.05%3A_Euler's_Equations_of_Motion
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/04%3A_Rigid_Body_Rotation/4.05%3A_Euler's_Equations_of_Motion
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Classical_Mechanics_(Tatum)/04%3A_Rigid_Body_Rotation/4.05%3A_Euler's_Equations_of_Motion

	Introduction
	Proof

