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Abstract

PageRank is an algorithm used by Google Search to rank web pages in their
search engine results. It is named after both the term “web page” and co-founder
Larry Page. PageRank is a way of measuring the importance of website pages.

§1 Introduction

A search engine aims to rank web pages effectively and efficiently. It sorts and ranks the
sites containing a certain keyword, such that the first few sites are the most relevant.
The key assumption made is that the most important (authoritarial) sites receive more
links from other sites.

§2 How It Works

Let S be the set containing four sites that contain a certain keyword. Then

S = {s1, s2, s3, s4}.

It is given that

• s1 references s2, s3 and s4;

• s2 references s4;

• s3 references s1 and s4;

• s4 references s1 and s3.

We can form an adjacency matrix A = (aij) defined as

aij =
⎧⎪⎪⎨⎪⎪⎩

1 if sj references si,

0 if otherwise.
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Then

A =
⎛
⎜⎜⎜⎜
⎝

0 0 1 1
1 0 0 0
1 0 0 1
1 1 1 0

⎞
⎟⎟⎟⎟
⎠

.

Interpreting this for s1, for instance, it references s2, s3 and s4, so (2, 1)-, (3, 1)- and
(4, 1)-entries are 1’s.
Next we form the probability transition matrix P = (pij) defined as

pij =
aij

∑n
k=1 akj

.

Basically this transforms A such that the sum of entries in a column is 1.
Hence we have

P =
⎛
⎜⎜⎜⎜
⎝

0 0 1
2

1
2

1
3 0 0 0
1
3 0 0 1

2
1
3 1 1

2 0

⎞
⎟⎟⎟⎟
⎠

.

Suppose a person visits s3, then his state vector is given by

x1 =
⎛
⎜⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟⎟
⎠

.

His next state vector is given by

x2 = Px1 =
⎛
⎜⎜⎜⎜
⎝

1
2
0
0
1
2

⎞
⎟⎟⎟⎟
⎠

which means that he has equal probabilities of 1
2 of ending up at s1 and s4.

Subsequently, assuming the person randomly refers to other sites, his next state vector
is given by

x3 = P 2x1 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1
4
1
6
5
12
1
6

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

After multiple clicks, the resultant state vector in the run, if the person starts at s3, is

x∞ =
⎛
⎜⎜⎜⎜
⎝

0.267
0.100
0.300
0.333

⎞
⎟⎟⎟⎟
⎠

.
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This means that s4 has the highest probability of being visited in the long run, with
random clicks.
If the person starts at s1, we will eventually get the same resultant state vector, regardless
of the initial state vector.
Therefore we can rank the sites in descending order of relevance:

s4, s1, s3, s2

Since the resultant state vector remains constant in the long-run, we have the following
equation which relates the probability transition matrix and resultant state vector:

Px∞ = x∞ (1)

Notice that the stochastic matrix P has eigenvalue 1. Hence given P , in order to rank
sites, we simply need to compute the eigenvector x∞ (also known as equilibrium vector)
associated with eigenvalue 1.
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