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1 Newtonian Mechanics

Classical mechanics is all about the motion of particles. We start with a definition.

Definition 1.0.1. A particle is, loosely, defined as an object of insignificant size.
This means that if you want to say what a particle looks like at a given time, the only
information you have to specify is its position.

To describe the position of a particle we need a reference frame. This is a choice of
origin, together with a set of axes which, for now, we pick to be Cartesian. With respect
to this frame, the position of a particle is specified by a vector x. The trajectory of the
particle with respect to time is described by

x = x(t)

Notation. In this book we will use both the notation x(t) and r(t) to describe the
trajectory of a particle.

Definition 1.0.2. The velocity of a particle is defined to be

v ≡ ẋ = dx(t)
dt

(1.1)

Notation. We often denote the time derivative of a variable by a dot above the variable.

Definition 1.0.3. The acceleration of the particle is defined to be

a ≡ ẍ = d2x(t)
dt2 (1.2)

Vector Differentiation

The derivative of a vector is defined by differentiating each of the components. For
x = (x1, x2, x3),

dx
dt
= (

dx1

dt
,
dx2

dt
,
dx3

dt
)

Geometrically, the derivative of a path x(t) lies tangent to the path.
We will also be working with vector differential equations. These should be viewed as
three, coupled differential equations – one for each component. We will frequently come
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CHAPTER 1. NEWTONIAN MECHANICS 6

across situations where we need to differentiate vector dot-products and cross-products.
The meaning of these is easy to see if we use the chain rule on each component. For
example, given two vector functions of time, f(t) and g(t), we have

d
dt
(f ⋅ g) = df

dt
⋅ g + f ⋅ dg

dt

and
d
dt
(f × g) = df

dt
× g + f × dg

dt

Note that the order that we write the dot product does not matter, but we have to be
more careful with the cross product because, for example,

df
dt
× g = −g × df

dt
.

§1.1 Newton’s Laws

Newtonian mechanics is a framework which allows us to determine the trajectory x(t)
of a particle in any given situation. This framework is usually presented as three axioms
known as Newton’s laws of motion. They are given by:

Theorem 1.1.1 (Newton’s 1st Law of Motion). Left alone, a particle moves with constant
velocity.

Theorem 1.1.2 (Newton’s 2nd Law of Motion). The acceleration (or, more precisely,
the rate of change of momentum) of a particle is proportional to the force acting upon it.

Theorem 1.1.3 (Newton’s 3rd Law of Motion). Every action has an equal and opposite
reaction.

§1.2 Inertial Frames and Newton’s First Law

We have introduced the idea of a frame of reference: a Cartesian coordinate system in
which you measure the position of the particle. But for reference frames such as rotating
ones, for a particle of trajectory x(t), we certainly won’t find that d2x/dt2 = 0, i.e.
particles do not travel at constant velocity.
We see that if we want Newton’s first law to hold, we must be more careful about the
kind of reference frames we’re talking about. We first define an inertial reference frame.

Definition 1.2.1. An inertial reference frame is one in which particles travel at constant
velocity when the force acting on it vanishes.
In other words, in an inertial frame,

ẍ = 0 when F = 0

The true content of Newton’s first law can then be better stated as: inertial frames exist.
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§1.2.1 Galilean Relativity

Inertial frames are not unique. Given an inertial frame S in which a particle has coordi-
nates x(t), we can always construct another inertial frame S′ in which the particle has
coordinates x′(t) by any combination of the following transformations:

• Translation: x′ = x + a, for constant a.

• Rotation: x′ = Rx, for a 3 × 3 matrix R obeying RT R = 1. (This also allows
for reflections if det R = −1, although our interest will primarily be on continuous
transformations).

• Boost: x′ = x + vt, for constant velocity v.

Remark. The three transformations above are not quite the unique transformations that
map between inertial frames. But, for most purposes, they are the only interesting ones!
The others are transformations of the form x′ = λx for some λ ∈ R. This is just a trivial
rescaling of the coordinates; for example, we can measure distances in S in units of metres
and distances in S′ in units of parsecs.

It is simple to prove that all of these transformations map one inertial frame to another.
Suppose that a particle moves with constant velocity with respect to frame S, so that
d2x/dt2 = 0. Then, for each of the transformations above, we also have d2x′/dt2 = 0 which
tells us that the particle also moves at constant velocity in S′. Or, in other words, if S
is an inertial frame then so too is S′. The three transformations generate a group known
as the Galilean group.
We have already mentioned that Newton’s second law is to be formulated in an inertial
frame. But, importantly, it doesn’t matter which inertial frame. In fact, this is true
for all laws of physics: they are the same in any inertial frame. This is known as the
principle of relativity.
So position, direction and velocity are relative. But acceleration is not. You do not have
to accelerate relative to something else. It makes perfect sense to simply say that you
are accelerating or you are not accelerating. In fact, this brings us back to Newton’s first
law: if you are not accelerating, you are sitting in an inertial frame.

§1.2.2 Absolute Time

There is one last issue that we have left implicit in the discussion above: the choice of
time coordinate t. If observers in two inertial frames S and S′ fix the units – seconds,
minutes, hours – in which to measure the duration time then the only remaining choice
they can make is when to start the clock. In other words, the time variable in S and S′

differ only by
t′ = t + t0

This is sometimes included among the transformations that make up the Galilean group.
The existence of a uniform time, measured equally in all inertial reference frames, is
referred to as absolute time. It is something that we will have to revisit when we
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discuss special relativity. As with the other Galilean transformations, the ability to
shift the origin of time is reflected in an important property of the laws of physics. The
fundamental laws don’t care when you start the clock. All evidence suggests that the laws
of physics are the same today as they were yesterday. They are time translationally
invariant.

§1.3 Newton’s Second Law

The second law is the meat of the Newtonian framework. It is the famous “F = ma”,
which tells us how a particle’s motion is affected when subjected to a force F. The correct
form of the second law is

d
dt
(mẋ) = F(x, ẋ) (1.3)

This is usually referred to as the equation of motion. The quantity in brackets is called
the momentum:

p ≡mẋ

where m is the (inertial) mass of the particle.
In cases where mass does not change with time, we can write the second law in the more
familiar form:

mẍ = F(x, ẋ) (1.4)

Newton’s equation is a second order differential equation; this means that we will have
a unique solution only if we specify two initial conditions. These are usually taken to be
the position x(t0) and the velocity ẋ(t0) at some initial time t0.



2 Kinematics

§2.1 Uniformly accelerated linear motion

§2.1.1 Equations of motion

Velocity as function of time:
vx(t) = vx0 + axt (2.1)

Derivation. For the one-dimensional case in the x-direction, from the definition of accel-
eration as the time derivative of velocity,

ax =
dvx

dt

Solving the differential equation,

∫

vx(t)

vx0
dvx = ∫

t

0
ax dt Ô⇒ vx(t) − vx0 = axt

∴v(t) = (vx0 + axt)̂i + (vy0 + ayt)ĵ

Displacement as function of time:

x(t) = x0 + vx0t +
1
2axt2 (2.2)

Derivation.

vx(t) =
dx(t)

dt

vx0 + axt =
dx(t)

dt
dx = (vx0 + axt)dt

∫

x(t)

x0
= ∫

t

0
(vx0 + axt)dt

x(t) − x0 = vx0t +
1
2axt2

x(t) = x0 + vx0t +
1
2axt2

9
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∴r(t) = (x0 + vx0t +
1
2axt2)̂i + (y0 + vy0t +

1
2ayt2)ĵ

Eliminating time dependence:

vx(x)
2 = vx0

2 + 2ax[x(t) − x0] (2.3)

Derivation.

ax(t) =
dvx(t)

dt

ax =
dvx

dx

dx

dt

ax = vx
dvx

dx
ax dx = vx dvx

∫

x(t)

x0
ax dx = ∫

vx(t)

vx0
vx dvx

1
2vx(t)

2 −
1
2vx0

2 = ax[x(t) − x0]

vx(x)
2 = vx0

2 + 2ax[x(t) − x0]

§2.1.2 Projectile motion

Horizontal and vertical motions are completely independent from each other.
Conventionally, +x-direction is horizontally rightward, +y-direction is vertically upward.

Horizontal motion Vertical motion

vx(t) = vx0 + axt vy(t) = vy0 + ayt

x(t) = x0 + vx0t +
1
2axt2 y(t) = y0 + vy0t +

1
2ayt2

vx(x)2 = vx02 + 2ax(x − x0) vy(y)2 = vy02 + 2ay(y − y0)

The trajectory of two dimensional free falling motion is given by

x(t) = x0 + v0 cos θt Ô⇒ t =
x(t) − x0

v0 cos θ

y(t) = y0 + v0 sin θt −
1
2gt2

= y0 + tan θ[x(t) − x0] − (
g

2v02 cos2 θ
) [x(t) − x0]

2

Hence, the trajectory is parabolic.
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Exercise 2.1.1

The acceleration of a marble in a certain fluid is proportional to the speed of the
marble squared and is given by a = −kv2. If the marble enters the fluid with a
speed of v0, how long will it take before the marble’s speed is half of its initial
value?

Solution. Rewriting acceleration as the derivative of velocity and solving the differential
equation,

a(t) = −kv(t)2 Ô⇒
dv

dt
= −kv2

Solving the differential equation,

1
v2 dv = −k dt Ô⇒ ∫

v0
2

v0

1
v2 dv = −∫

t

0
k dt Ô⇒

2
v0
−

1
v0
= kt Ô⇒ t =

1
kv0

To determine the displacement of the marble at this time, rewrite acceleration as time
derivative of velocity.

dv

dt
= −kv2

Using chain rule,
dv

dx

dx

dt
= −kv2

Since v = dx
dt ,

v
dv

dx
= −kv2

Solving the differential equation,

1
v

dv = −k dx Ô⇒ ∫

v0
2

v0

1
v

dv = −∫
x

0
k dx Ô⇒ ln v0

2 − ln v0 = −kx Ô⇒ x =
ln 2
k
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Exercise 2.1.2

Ship A is 10km due west of ship B. Ship A is heading directly north at a speed
of 30km/h while ship B is heading in a direction 60° west of north at a speed of
20km/h. What will be their distance of closest approach?

Solution. We first set up a coordinate system: choose origin at initial position of ship A,
+x-direction is eastward and +y-direction is northward.
Position vector of A with respect to B:

rAB = rAG + rGB

= rAG − rBG

= vAtĵ + (10 − vBt sin 60°)̂i + vBt cos 60°ĵ
= (−10 + vB sin 60°t)̂i + (vAt − vB cos 60°t)ĵ

Relative distance between A and B at time t:

rAB = ∣rAB ∣ =
√
(−10 + vB sin 60°t)2 + (vAt − vB cos 60°t)2

To find minimum value of rAB,

drAB

dt
= 0 Ô⇒ t0 =

√
3

7

∴ Minimum distance between A and B = 7.56 km .
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Exercise 2.1.3

A projectile is fired up an incline of angle ϕ with an initial speed vi at an angle θ
with respect to the horizontal (θ > ϕ). Find the direction in which it should be
aimed to achieve the maximum range along the incline. What is the maximum
range?

Solution. vx(t) = vi cos θ, vy(t) = vi cos θ Let the time when projectile lands on the incline
be T .
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Exercise 2.1.4

At t = 0 on a planet, a projectile is fired with speed v0 at an angle θ above the
horizontal. On this planet, the acceleration due to gravity increases linearly with
time, starting with a value of zero when the projectile is fired from the ground,
i.e. g(t) = αt. What horizontal distance does the projectile travel? What should θ
be to maximise this distance?



3 Translational Dynamics

§3.1 Forces

§3.1.1 Types of forces

Weight

Weight W is the gravitational force exerted by Earth on an object.

Normal force

Normal force N is the contact force exerted by a surface (ground or floor) on an object.

Tension force

Tension force T is the force experienced in an object when it is deformed (compressed or
depressed).

Spring force

Theorem 3.1.1: Hooke’s Law

Spring force is directly proportional to extension of spring.

Fs = −kx (3.1)

where k is the spring constant.

Frictional force

There are two types of frictional force:

15
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• Kinetic friction force: object is sliding on rough surface

fk = µkN

• Static friction force: object is not sliding

fs ≤ µsN

Resistive force

Drag force FR: force caused by interaction of an object and the fluid it is moving through

• For objects moving at low speeds: resistive force is directly proportional to speed

FR = −bv (3.2)

• For objects moving at high speeds: resistive force is directly proportional to square
of speed

FR = −
1
2DρAv2 (3.3)

where D is the drag coefficient, which depends on the shape and surface texture of
the object.
Terminal velocity is when an object moving through a fluid has reached transla-
tional equilibrium. For an object falling downwards:

∑Fy = Fg −FR =may Ô⇒ mg −
D

ρ
Av2 =may Ô⇒ ay = g −

DρAv2

2m

In absence of air resistance, ay = g.
When ay = 0,

DρAv2

2m
= g Ô⇒ vterminal =

√
2mg

DρA
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§3.2 Centre of mass

Definition 3.2.1. The centre of mass is a special point in a system, as if all of the mass
of the system is concentrated at that point.

Centre of mass for a system of point particles:

xCM =
∑i mixi

∑i mi

yCM =
∑i miyi

∑i mi

zCM =
∑i mizi

∑i mi

(3.4)

where the distances depend on the coordinate system set up.
Centre of mass of an extended object (think of an extended object as a system con-
taining infinitely many small mass elements):

xCM = lim
∆mi→0

1
M
∑

i

xi∆mi

xCM =
1

M ∫
x dm yCM =

1
M ∫

y dm zCM =
1

M ∫
z dm (3.5)

§3.2.1 Motion of centre of mass

Velocity

x-, y- and z-components of the velocity of centre of mass, denoted by vCM,x, vCM,y and
vCM,z, are the time derivatives of xCM , yCM and zCM respectively.

vCM,x =
∑i mivxi

∑i mi

vCM,y =
∑i mivyi

∑i mi

vCM,z =
∑i mivzi

∑i mi

(3.6)

These equations can be written as one single vector equation:

vCM =
1

M
∑

i

mivi (3.7)

Total momentum of the system is given by

p =MvCM =∑
i

mivi (3.8)

This equation states that the total momentum is the product of total mass and velocity
of centre of mass.

Acceleration and external force

Taking time derivative of the above equation gives

MaCM =∑
i

miai
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Note that ∑i miai is simply the sum of all forces (external and internal):

∑F =∑Fext +∑Fint =∑
i

miai

By Newton’s 3rd law, internal forces all cancel in pairs so ∑Fint = 0. Hence

∑Fext =MaCM and ∑Fext =
dp
dt

(3.9)

When a body or a collection of particles is acted on by external forces, centre of mass
moves as though all the mass were concentrated at that point and it were acted on by a
net force equal to the sum of external forces on the system.
For example, a shell explodes into two fragments in flight. Ignoring air resistance, centre
of mass continues on the same trajectory aas the shell’s path before exploding.

Note that if the net external force acting on the system is zero, we get

dp
dt
= 0 Ô⇒ MvCM = p = constant
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§3.3 Equilibrium

Equilibrium conditions:

1. force balance (vectorially or in terms of projections)

2. torque balance (only for one- and two-dimensional geometry).

Stable and unstable equilibria.
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§3.4 Elastic modulus

compression. We consider three types of deformation and define an elastic modulus for
each:

1. Young’s modulus measures the resistance of a solid to a change in its length.

2. Shear modulus measures the resistance to motion of the planes within a solid
parallel to each other.

3. Bulk modulus measures the resistance of solids or liquids to changes in their
volume.

§3.4.1 Tensile and compressive

We usually assume objects to be rigid. When large forces are applied to an object, it
deforms.
Suppose that we pull on the ends of a bar with a force F . We say that the bar is in
tension. The internal forces in the bar resist the tension forces and hold the bar together.
Even so, the bar deforms and the equilibrium length of the bar increases.
If the bar is in equilibrium with the applied forces, then every cross section of the bar
must be subject to the same internal forces that resist stretching.

Definition 3.4.1. Stress is the ratio of the magnitude of the applied force F to cross-
sectional area A.

σ ≡
F

A
(3.10)

Remark. There are two types of stress: tensile and compressive.

Definition 3.4.2. Strain is the ratio of the change in length δ to the initial length L.

ε ≡
δ

L
(3.11)

Remark. There are two types of strain: tensile and compressive.

The amount of strain an object undergoes depends on the stress applied to it. If the
stress is not too great, the strain is observed to be proportional to the stress.

Definition 3.4.3. Young modulus is the ratio of stress to strain.

Y ≡
σ

ε
=

FL

Aδ
(3.12)

§3.4.2 Shear

When an external force acts on an object, it undergoes deformation. If the direction of
the force is parallel to the plane of the object. The deformation will be along that plane.
The stress experienced by the object here is shear stress.
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Definition 3.4.4. Shear stress is a type of stress that acts coplanar with cross section
of material.

τ ≡
F

A
(3.13)

Shear stress arises due to shear forces. They are the pair of forces acting on opposite
sides of a body with the same magnitude and opposite direction.
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§3.5 Work Done and Energy

§3.5.1 Work

Work done by a constant force:

W = F ⋅∆r = F∆r cos θ (3.14)

where θ is the angle between F and r.
Work done by a non-constant force:

W = ∫
xf

xi

Fx dx (3.15)

§3.5.2 Energy

Theorem 3.5.1: Net Work–Kinetic Energy Theorem

∑W =∆K (3.16)

Kinetic energy for translational motion:

K =
1
2mv2 (3.17)

Gravitational potential energy (in constant gravitational field):

Ug =mgh (3.18)

Potential energy for simple force fields (also as a line integral of the force field).
Relationship between conservative forces and potential energy:

F = −
dU

dx
(3.19)

§3.5.3 Power

Definition 3.5.1: Power

Rate at which work is done
Pavg =

W

∆t
(3.20)

Pinstantaneous =
dW

dt
(3.21)

Instantaneous power (constant force):

Pinstantaneous = F ⋅ v (3.22)
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Derivation.
Pinstantaneous =

dW

dt
=

d(F ⋅∆r)
dt

= F ⋅
d∆r
dt
= F ⋅ v



4 Rotational Motion

§4.1 Kinematics

Definition 4.1.1. Radian is defined as

θ ≡
s

r
(4.1)

Definition 4.1.2. Angular displacement of a rigid object is the angle that the object
rotates through during some time interval.

∆θ ≡ θf − θi (4.2)

Remark. Every point on a rigid object undergoes the same angular displacement in any
given time interval.

Definition 4.1.3. Angular velocity is the rate of change of angular displacement with
respect to time.

ω(t) ≡ lim
∆t→0

∆θ

∆t
=

dθ(t)

dt
(4.3)

Remark. Every part of a rotating rigid object has the same angular velocity at any
instant of time.

Direction of angular velocity can be found using the “right hand rule”. Curl fingers of
right hand around rotation. Thumb points in the direction of the vector.

Definition 4.1.4. Angular acceleration is the rate of change of angular velocity with
respect to time.

α(t) ≡ lim
∆t→0

∆ω

∆t
=

dω(t)

dt
=

d2θ(t)

dt
(4.4)

Angular velocity as a function of time

ω(t) = ω0 + αt (4.5)

Angular position as a function of time

θ(t) = θ0 + ω0t +
1
2αt2 (4.6)

24
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Eliminating time dependence

ω2(t) = ω0
2 + 2α[θ(t) − θ0] (4.7)

For constant a and α, we can write analogous equations for rotational motion as in linear
motion, as shown above.
Tangential velocity (linear speed):

v = rω (4.8)

Derivation.
v =

ds

dt
=

d(rθ)

dt
= r

dθ

dt
= rω

Tangential acceleration:
at = rα (4.9)

Derivation.
at =

dv

dt
=

d(rω)

dt
= r

dω

dt
= rα

Centripetal acceleration
ar =

v2

r
= rω2 (4.10)

Derivation.

∆v

v
=

∆s

r

∆v =
v

r
∆s

lim
∆t→0

∆v

∆t
=

v

r
lim

∆t→0

∆s

∆t

Acceleration is the vector sum of tangential acceleration and centripetal acceleration.

a = at + ar

∣a∣ =
√

at
2 + ar

2 = r
√

α2 + ω4 (4.11)

Comparison between translational and rotational motion:
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Quantity Translational Rotational

Displacement x θ

Velocity v ω

Acceleration a α

Mass / moment of inertia m I

Momentum p L
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§4.2 Dynamics

§4.2.1 Moment of Inertia

Definition 4.2.1. Moment of inertia is the measure of the resistance of an object to
changes in its rotational motion, depends on the choice of rotational axis.

Moment of inertia of one particle:
I ≡mr2 (4.12)

Moment of inertia of a system of particles:

I =∑
i

miri
2 (4.13)

Moment of inertia of a continuous rigid object (divide it into infinitely many small ele-
ments):

I = lim
∆mi→0

∑
i

ri
2∆mi

I = ∫ r2 dm (4.14)

Moments of inertia of homogeneous rigid objects:

Object Moment of inertia

Hoop about central axis I =MR2

Solid cylinder (or disk) about central axis I = 1
2MR2

Solid cylinder (or disk) about central diameter I = 1
4MR2 + 1

12ML2

Thin rod about axis through center perp to length I = 1
12ML2

Solid sphere about any diameter I = 2
5MR2

Thin spherical shell about diameter I = 2
3MR2

Hoop about any diameter I = 1
2MR2

Expressions for mass densities come in useful:

dm =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

λ dx linear mass density
σ dx surface mass density
ρ dx volume mass density
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Exercise 4.2.1

Moment of inertia of a uniform thin hoop of mass M and radius R about an axis
perpendicular to the plane of the hoop and passing through its center.

Solution. For constant radius, moment of inertia is given by

I = ∫ r2 dm = R2
∫ dm = MR2

Exercise 4.2.2

Moment of inertia of a uniform rigid rod of length L and mass M about an axis
perpendicular to the rod and passing through its centre of mass.

Solution. Set up coordinate system: rod lies along x-axis, axis lies along y-axis.
A small length dx at a distance x from origin has a mass dm. Let λ be linear mass
density, then

λ =
M

L
=

dm

dx
Ô⇒ dm =

M

L
dx

Moment of inertia is given by

I = ∫ r2 dm = ∫ x2 M

L
dx =

M

L ∫

L
2

L
2

x2 dx =
M

L

⎡
⎢
⎢
⎢
⎢
⎣

2
3 (

L

2 )
3⎤
⎥
⎥
⎥
⎥
⎦

=
1
12ML2

Exercise 4.2.3

Moment of inertia of uniform solid cylinder has a radius R, mass M and length L
about its axis of cylinder.

Solution. The solid cylinder has to be cut or split into infinitesimally thin rings. Each
ring consists of the thickness of dr with length L. We then sum up the moments of these
infinitesimally thin cylindrical shells.
Using the concept of volume mass density ρ,

dm = ρ dV = ρ(L dA) = ρL(π(r + dr)2 − πr2) = (2πr)Lρ dr

Moment of inertia is given by

I = ∫ r2 dm = ∫
R

0
2πr3Lρ dr = 2πLρ∫

R

0
r3 dr =

1
2(πr2Lρ)R2 =

1
2MR2
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Exercise 4.2.4

Moment of inertia of a solid sphere of mass M and radius R about an axis
through its centre.

Solution. The expression for the moment of inertia of a sphere can be developed by
summing the moment of infinitely thin disks about the z-axis through its centre.

Using volume mass density:

ρ =
M

V
=

dm

dV
Ô⇒ dm = ρ dV

Moment of inertia of one disk about z-axis:

dI =
1
2y2 dm =

1
2y2ρ dV =

1
2y2ρπy2 dz

Hence moment of inertia of sphere about z-axis is given by

ICM = ∫ dI =
1
2ρπ∫

R

−R
y4 dz =

1
2ρπ∫

R

−R
(R2 − z2)2 dz =

8
15ρπR5 =

2
5MR2

Remark. Another method is to sum up spherical hollow shells.

Exercise 4.2.5

Moment of inertia of a hollow cylinder with inner radius R1 and outer radius R2
about the central axis.



CHAPTER 4. ROTATIONAL MOTION 30

Proof. Consider a hollow cylindrical shell with radius r and height L.
Using volume mass density,

ρ =
dm

dV
Ô⇒ dm = ρ dV = 2πρLr dr

Hence moment of inertia is

I = ∫ r2 dm = ∫
Rout

Rin
2πρLr3 dr =

πρL

2
[r4]

Rout

Rin
=

1
2M(R2

out +R2
in)

where ρ =
M

π(R2
out −R2

in)L
.
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Theorem 4.2.1: Parallel axis theorem

Moment of inertia I about any axis parallel to axis through CM and a distance
D away is given by

I = ICM +MD2 (4.15)

Figure 4.1: Parallel axis theorem

Proof. Moment of inertia about the z-axis is

I = ∫ r2 dm = ∫ (x
2 + y2)dm

From the figure, x = x′ + xCM and y = y′ + yCM hence

I = ∫ [(x
′ + xCM)

2 + (y′ + yCM)
2]dm

= ∫ (x
′2 + y′2)dm + (xCM

2 + yCM
2)∫ dm + 2xCM ∫ x′ dm + 2yCM ∫ y′ dm

By definition of centre of mass, ∫ x′ dm = ∫ y′ dm = 0.
Given that ∫ dm =M and D2 = xCM

2 + yCM
2,

I = ICM +MD2
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Exercise 4.2.6

Consider a uniform rigid rod of mass M and length L. Find the moment of iner-
tia of the rod about an axis perpendicular to the rod through one end.

Solution. Moment of inertia is

1
12ML2 +M (

L

2 )
2

=
1
3ML2

Theorem 4.2.2: Perpendicular axis theorem

Sum of moments of inertia about any two perpendicular axes in the plane of the
body is equal to the moment of inertia about an axis through the point of inter-
section, perpendicular to the plane of the object.

Iz = Ix + Iy (4.16)

This theorem works only for planar figures (2D bodies), i.e. bodies of negligible
thickness.

Proof.

Iz = ∫ r2 dm

= ∫ (x
2 + y2)dm

= ∫ x2 dm + ∫ y2 dm
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§4.2.2 Rotational kinetic energy

We treat a rigid object as a collection of particles rotating about a fixed z-axis with an
angular speed ω.
Kinetic energy of the i-th particle is given by

Ki =
1
2mivi

2 =
1
2mi(riω)

2 =
1
2miri

2ω2

Hence rotational kinetic energy possessed by a rigid object is given by

K =∑
i

Ki =
1
2 (∑i

miri
2)ω2

K =
1
2Iω2 (4.17)

Remark. Notice the similarities between this and the formula for translational kinetic
energy K = 1

2mv2.
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§4.2.3 Torque

Definition 4.2.2. Torque is the measure of tendency of a force to rotate an object about
some axis.

∣τ ∣ = Fℓ = F ⋅ r sin θ (4.18)

where ℓ = r sin θ is the level arm, i.e. the perpendicular distance from axis of rotation
to the line of action of force.
Representing torque as a vector,

τ = r ×F (4.19)

Torque and angular acceleration

τ = Iα (4.20)

Proof. Consider a force dFt acting on a mass element dm of an extended object.
From Newton’s 2nd law,

dFt = (dm)at Ô⇒ dτ = r dFt = rat dm

Since at = rα,
dτ = αr2 dm

Net torque about origin due to all external forces is

∑ τ = ∫ dτ = ∫ αr2 dm = α∫ r2 dm = Iα
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§4.2.4 Work, Energy, Power

The work done by force F on an object as it rotates through an infinitesimal distance
ds = r dθ is

dW = F ds = (F sin ϕ)r dθ = τ dθ

Integrating both sides gives
W = ∫ τ dθ (4.21)

Rate at which work is done by F as the object rotates about the fixed axis through an
angle dθ in a time interval dt is

dW

dt
= τ

dθ

dt

Hence power is
P = τω (4.22)

Theorem 4.2.3: Work–kinetic energy theorem

Net work done by external forces in rotating a rigid body about a fixed axis
equals the change in the object’s rotational kinetic energy.

∑W =
1
2Iω2

f −
1
2Iω2

i (4.23)
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§4.2.5 Rolling motion

In pure rolling motion, an object rolls without slipping.
The object rotates through an angle θ, so centre of mass moves a linear distance s = Rθ.
Linear speed of centre of mass:

vCM = Rω (4.24)

Derivation.
vCM =

ds

dt
= R

dθ

dt
= Rω

Linear acceleration of centre of mass:

aCM = Rα (4.25)

Derivation.
aCM =

dvCM

dt
= R

dω

dt
= Rα

Pure rolling motion is a combination of

• pure translational motion of centre of mass

• pure rotational motion around centre of mass

Total kinetic energy of a rolling object is the sum of rotational kinetic energy about
centre of mass and translational kinetic energy of centre of mass.

K =
1
2ICMω2 +

1
2MvCM

2 (4.26)

Derivation. Object rotates about point P , the point of contact with ground.
Total kinetic energy can be expressed as

K =
1
2IP ω2

where IP is the moment of inertia about an axis through P .
Using parallel axis theorem,

IP = ICM +MR2

Hence
K =

1
2ICMω2 +

1
2M(Rω)2 =

1
2ICMω2 +

1
2Mv2

CM
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§4.2.6 Angular momentum

Definition 4.2.3. Angular momentum is the cross product of instantaneous position
vector r and linear momentum p.

L ≡ r × p (4.27)

Derivation. From the definition of torque, τ ≡ r ×F,

∑ τ = r ×∑F = r × dp
dt

Add the term dr
dt ×p to the right-hand side, which is zero because dr

dt = v which is parallel
to p.

∑ τ = r × dp
dt
+

dr
dt
× p = d(r × p)

dt
=

dL
dt

Hence the torque acting on a particle is equal to the time rate of change of angular
momentum.

∑ τ =
dL
dt

(4.28)

This is the rotational analog of Newton’s 2nd law.

System of particles

Total angular momentum of a system of particles about some point is defined as the
vector sum of angular momentum of the individual particles.

Ltotal =∑
i

Li

Hence
∑

i

τi =∑
i

dLi

dt
=

dLtotal

dt

The torque acting on the particles of the system are due to internal forces between
particles and external forces. However, net torque due to internal forces is zero as a
result of Newton’s 3rd law. Hence total angular momentum of system varies only if net
external torque acts on the system:

∑ τext =
dL
dt

(4.29)

Net torque about axis through origin equals time rate of change of total angular momen-
tum of system about that origin.

Theorem 4.2.4

Resultant torque acting on a system about axis through centre of mass equals
time rate of change of angular momentum regardless of motion of centre of mass.
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Rigid body

Angular momentum of one particle is

L ≡mr2ω =mrv (4.30)

Taking the sum of angular momentum over all particles on a rigid body,

L =∑
i

Li = (∑
i

miri
2)ω = Iω

L = Iω (4.31)

Taking time derivative,
dL

dt
= I

dω

dt
= Iα

Hence
∑ τext = Iα (4.32)

Conservation of angular momentum

Theorem 4.2.5

Total angular momentum of a system is constant in both magnitude and direc-
tion if the resultant external torque acting on the system is zero.

∑ τext =
dLtotal

dt
= 0 (4.33)

Li = Lf
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Exercise 4.2.7

A uniform disc of radius R is spinning about the vertical axis and placed on a
horizontal surface. If the initial angular speed is ω and the coefficient of friction
is µ, determine the time before which the disc comes to rest.

Solution. A common mistake is to directly apply the equation τ = fk × R because the
radius is not the same for all points on the disc.
Instead, we analyse using a ring of mass dm, radius r and width dr, where all points on
the ring have the same radius from the centre.
Torque of ring is

dτ = r dfk = r(µkg dm) = µkgr dm

Torque of disk is
τ = ∫ dτ = ∫ µkgr dm = µkg∫ r dm

Using area density,
σ =

M

A
=

dm

dA
,

hence
dm

2πr
=

M

πR2 Ô⇒ dm =
M

πR2 2πr

Substituting this gives us

τ = µkg∫ r
M

πR2 2πr dr =
2µkMg

R2 ∫

R

0
r2 dr =

2µkMg

R2
R3

3 =
2
3µkMgR

Using Newton’s 2nd Law,

τ = Iα Ô⇒
2
3µkMgR = (

1
2MR2)α Ô⇒ α =

4
3

µkg

R

Using angular acceleration, calculate the time taken:

ωf = ωi − αt

0 = ω − αt

t =
ω

α

t =
3
4

Rω

µkg
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Exercise 4.2.8

A uniform rod of mass M and length L is placed vertically with one end pinned
to a frictionless horizontal floor. It starts to fall when it is given a small displace-
ment. When the rod makes an angle θ with the vertical, find

(a) the radial acceleration of the top of the rod;

(b) the tangential acceleration of the top of the rod.

Solution. Let τO denote torque about pin at point O.
Using Newton’s 2nd Law,

τO = Iα Ô⇒ Mg (
L

2 sin θ) =

⎡
⎢
⎢
⎢
⎢
⎣

1
12ML2 +M (

L

2 )
2⎤
⎥
⎥
⎥
⎥
⎦

α Ô⇒ α =
3
2

g sin θ

L

Note that since the axis of rotation through the pin at O is parallel to the axis through
centre of mass, we use the parallel axis theorem to determine I.
Using this value of angular acceleration, we can calculate tangential acceleration.

at = Lα =
3
2g sin θ

To calculate radial acceleration, recall that

ar =
vt

2

L
= Lω2

To find ω, recall that angular acceleration is the derivative of angular velocity with respect
to time.

dω

dt
=

3
2

g sin θ

L
dω

dθ

dθ

dt
=

3
2

g sin θ

L

ω dx =
3
2

g sin θ

L
dθ

∫

ω

0
ω dω = ∫

θ

0

3
2

g sin θ

L
dθ

ω2

2 =
3g

2L
(− cos θ + 1)

ω2 =
3g

L
(1 − cos θ)

Substituting this value of angular velocity gives us

ar = 3g(1 − cos θ)



5 Gravitation

§5.1 Gravitational Force

§5.1.1 Newton’s Law of Gravitation

Theorem 5.1.1: Newton’s Law of Gravitation

Let the masses be m1 and m2 and r be their separation. Then the gravitational
force acting on each due to the presence of the other is given by

F = G
m1m2

∣r∣2
r̂ (5.1)

where G is the gravitational constant which has the value of 6.67 × 1011 N m2 kg−2

§5.1.2 Principle of Superposition

Given a group of n particles, we find the net (or resultant) gravitational force on any
one of them from the others by using the principle of superposition, by adding individual
gravitational forces vectorially:

Fk,net = ∑
1≤i≤n,i≠k

Fki

We have looked at the case of point charges. What about the gravitational force on a
particle from an extended object? This force is found by dividing the object into parts
small enough to treat as particles and then finding vector sum of the forces on the particle
from all the parts. In the limiting case, we can divide the extended object into differential
parts each of mass dm and each producing a differential force dF on the particle. In this
limit, the sum becomes an integral and we have

Fk = ∫ dF .

41
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§5.2 Gravitational Field

§5.2.1 Gravitation Near Earth’s Surface

§5.2.2 Gravitation Inside Earth

§5.3 Gravitational Potential Energy

§5.3.1 Gravitational potential energy of spherical shell

Let us consider a uniform spherical shell of mass M . Its mass per unit area will be
σ = M

4πR2 . Consider a strip of width R dθ and radius R sin θ. The whole shell is made up
of such strips.

Potential at P due to the ring is given by

dV = −G
dM

z

dV = −G
2πR2 sin θ dθ

z
(1)

Now,
z =
√
(x −R cos θ)2 + (R sin θ)2

z2 = x2 +R2 − 2xR cos θ

Differentiating, we get
2xR sin θ = 2z dz

sin θ dθ =
z dz

xR
(2)

From (1) and (2),
dV = −

GM

2z

z dz

xR
= −

GM

2xR
dz

Case 1: P lies outside the shell

In this case x −R ≤ z ≤ x −R. Therefore potential is

V = −
GM

2xR ∫
x+R

x−R
dz = −

GM

2xR
2R = −

GM

x
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Case 2: P lies inside the shell

In this case R − x ≤ z ≤ x −R. Therefore potential is

V = −
GM

2x ∫
x+R

R−x
dz = −

GM

R
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§5.3.2 Elliptical orbits and orbital transfers

To solve problems involving orbital transfers, the key strategy is to work from energy
considerations in satellite motion. Recall that the total mechanical energy E of a bound
satellite system is E = −GMm

2r .
A similar expression for E for elliptical orbits is the same, with r replaced by the semi-
major axis of length a:

E = −
GMm

2a
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§5.3.3 Effective radial potential

An orbiting satellite of mass m under the influence of the gravitational field due to the
Earth of mass M , is at a distance r from the centre of Earth.
Assuming that the system consists of Earth and a satellite and the mass of Earth is many
times larger than that of satellite, total energy U of the system is given by

Etotal =
1
2mv2

r +
L2

2mr2 −
GMm

r

where L is angular momentum of satellite, vr is radial velocity of satellite.

Derivation. Total energy of a moving satellite m under the influence of the gravitational
field due to the Earth of mass M is given by:

U = Ek +Ep =
1
2mv2 −

GMm

r

Since the satellite has an ellipsoidal orbit,

v2 = v2
t + v2

r

Since satellite is in a central force field τ = r ×F = 0 and L =mrvt.
Therefore, sub into equations and simplifying,

Etotal =
1
2mv2

t +
1
2mv2

r −
GMm

r
=

1
2mv2

r +
L2

2mr2 −
GMm

r

Hence effective potential is given by

Ueff = Etotal −KEr =
L2

2mr2 −
GMm

r

Ueff =
L2

2mr2 −
GMm

r
(5.2)

§5.4 Planets and Satellites: Kepler’s Laws

Kepler’s Laws are used to describe planetary motion.

Theorem 5.4.1: Kepler’s 1st Law

The orbit of every planet is an ellipse with the Sun at one of the two foci.
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Proof. Kepler’s 1st law indicates that the circular orbit is a very special case and elliptical
orbits are the general situation.

An ellipse is mathematically defined by choosing two points F1 and F2, each of which is
called a focus, and then drawing a curve through points for which PF1+PF2 is constant.
The major axis is the longest distance through the centre between points on the ellipse.
Semi-major axis is the distance a. The minor axis is the shortest distance. Semi-minor
axis is the distance b. Eithr focus of the ellipse is located at a distance c from the centre
of ellipse, where a2 = b2 + c2.

The eccentricity of an ellipse is defined as e =
c

a
, which describes the general shape of the

ellipse. For a circle, c = 0. Higher values of eccentricity correspond to longer and thinner
ellipses. The range of values of the eccentricity for an ellipse is 0 < e < 1.
Aphelion: point where the planet is the farthest away from the Sun (for object in orbit
around Earth, this point is called the apogee), distance = a + c

Perihelion: point where the planet is the nearest to the Sun (for object in orbit around
Earth, this point is called the perigee), distance = a − c
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Theorem 5.4.2: Kepler’s 2nd Law

A line joining a planet and the Sun sweeps out equal areas during equal intervals
of time.

Proof. Kepler’s 2nd law is a consequence of the conservation of angular momentum.
By the law of conservation of angular momentum,

L = rp =mr2ω =mr2 dθ

dt

Area of a small sector dA swept out by the radial line is given by

dA =
1
2r2 dθ =

1
2r2 dθ

dt
dt =

1
2

L

m
dt Ô⇒ A =

1
2

Lt

m

Hence for constant t, A is constant.
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Theorem 5.4.3: Kepler’s 3rd Law

The ratio of the square of a planet’s period of revolution to the cube of the semi-
major axis of its orbit around the Sun is a constant, and this constant is the
same for all planets.

T 2 =
4π2

GM
a3 (5.3)

where a is the length of the semi-major axis.

Proof. In the case of a circular orbit, gravitational force provides centripetal force for
orbit.

mrω2 = G
mM

r2

Then, expressing the angular velocity ω in terms of the orbital period T and then rear-
ranging, results in Kepler’s Third Law:

mr (
2π

T
)

2
= G

Mm

r2 Ô⇒ T 2 = (
4π2

GM
) r3 Ô⇒ T 2 ∝ r3
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§5.5 Satellites: Orbits and Energy

§5.6 Einstein and Gravitation



6 Hydrodynamics

§6.1 Fluid Statics

Theorem 6.1.1: Pascal’s principle

In equilibrium, the pressure in a static varies with height:

dP

dy
= −ρg (6.1)

This always holds in equilibrium. For instance, if we squeeze a sealed container of
fluid, increasing the pressure locally, then this pressure increase must propagate
throughout the entire fluid to maintain dP /dy = −ρg.

Theorem 6.1.2: Archimedes’ Principle

An object in a fluid experiences an upward buoyant force due to the different
pressures on its top and bottom sides. The force is equal in magnitude to the
weight of the fluid displaced.

§6.1.1 Surface tension

Surface tension and the associated energy, capillary pressure.

50
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§6.2 Fluid Mechanics

Steady flow is where every fluid particle arriving at a given point has the same velocity.
Viscosity is the degree of internal friction; resistance that 2 adjacent layers of the fluid
have to move relative to each other.
Ideal fluid flow:

1. Non-viscous

2. Steady

3. Incompressible

4. Irrotational

Theorem 6.2.1: Equation of continuity

This equation says that the flow of fluid through a tube of changing cross section
is constant.

A1v1 = A2v2 (6.2)

Derivation. Conservation of mass
Consider the case of a fluid moving from a region of cross-sectional area A1 to a region of
area A2. Since the fluid is incompressible, the same amount of it leaves each region and
enters the other region during the same time interval.
Volume of fluid that flows into the tube across A1 in time interval ∆t is

∆V1 = A1v1∆t

Hence the mass of fluid that flows into the tube in time ∆t is

∆m1 = ρ∆V1 = ρA1v1∆t

Similarly, the mass of fluid that flows across A2 is

∆m2 = ρ∆V2 = ρA2v2∆t

Equating the two masses,

∆m1 =∆m2 Ô⇒ A1v1 = A2v2

Theorem 6.2.2: Bernoulli’s equation

P1 +
1
2ρv1

2 + ρgy1 = P2 +
1
2ρv2

2 + ρgy2 = constant (6.3)

Derivation. Conservation of energy
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§6.2.1 Viscosity

Theorem 6.2.3: Poiseuille’s Law

P1 − P2 = 8QηL

πR4 (6.4)

where Q is the flow rate, η is the coefficient of viscosity.
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